Matrix compositions and their impact on grain growth and strength of oxide ceramic composites

Author:

Almeida Renato S. M.1ORCID,Rech Marcelo B. R.12,Condi Mainardi Jéssica1,Tushtev Kamen1ORCID,Rezwan Kurosch13

Affiliation:

1. Advanced Ceramics Universität Bremen Bremen Germany

2. Department of Mechanical Engineering Federal University of Santa Catarina Florianópolis Brazil

3. MAPEX ‐ Center for Materials and Processes University of Bremen Bremen Germany

Abstract

AbstractOxide ceramic matrix composites (Ox‐CMCs) are composed of porous matrices reinforced by dense fibers to achieve high damage tolerance. It is generally assumed that their mechanical properties are fiber dominant. However, fiber strength can also be influenced by the surrounding matrix as it can affect fiber grain growth. Fiber–matrix interactions are studied in this work regarding fiber microstructural evolution and composite strength. Minicomposites containing Nextel 610 fibers and different matrix compositions (alumina, alumina–zirconia, and mullite–alumina) are evaluated after sintering and after additional heat treatment at 1200°C for 100 h. Fiber grain growth during sintering is faster in alumina matrix and slower in mullite–alumina matrix. Scanning transmission electron microscope–energy‐dispersive X‐ray spectroscopy (STEM–EDX) measurements show that Si diffuses between fiber and matrix grain boundaries. This outward or inward diffusion of SiO2 leads to the respectively different grain growth kinetics. Grain growth inhibition in alumina–zirconia matrix is only observed after the longer heat treatment, suggesting that ZrO2 diffusion is slower than SiO2. The resultant composite strength depends not only on fiber properties, but also on matrix densification. Minicomposite with alumina–zirconia matrix showed higher strength, while mullite–alumina composites showed higher thermal stability. In summary, the properties of Ox‐CMCs can be tailored by adjusting the matrix composition with the used fibers.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3