Parameter identification of elastoplastic model for CuCrZr alloy by the neural network‐aided Bayesian inference

Author:

Chen Zhiwei12,Jin Ping12,Li Ruizhi12,Qi Yaqun13,Cai Guobiao12

Affiliation:

1. School of Astronautics Beihang University Beijing China

2. Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies, Ministry of Education Beihang University Beijing China

3. China Manned Space Engineering Office Beijing China

Abstract

AbstractThe constitutive model serves as the foundation for executing structure analysis to obtain the deformation and stress/strain. In this paper, a neural network‐assisted Bayesian parameter identification framework is presented to calibrate parameters of the constitutive model while considering the unavoidable uncertainties. The low‐cycle fatigue test of the CuCrZr alloy at 700 K is first performed to provide realistic data. The posterior distributions are obtained by applying the transitional Markov Chain Monte Carlo method. To accelerate the identification, the neural network is adopted to directly predict the likelihood function value given material parameters. The effect of prior distributions on the identification parameters is also studied. The characteristic parameters of the normal distribution have almost no effect on the identification results. In the absence of prior information, uniform prior distributions can be used to perform Bayesian identification of material parameters, and satisfactory identification parameters can also be acquired.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference56 articles.

1. KangJ BeckerAA SunW.Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach. Paper presented at: Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design and Applications;2015.

2. Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method

3. Particle swarm optimization procedure in determining parameters in Chaboche kinematic hardening model to assess ratcheting under uniaxial and biaxial loading cycles

4. A comparison of deterministic and Bayesian inverse with application in micromechanics

5. A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3