Treatments with the specific δ‐secretase inhibitor, compound 11, promote the regeneration of motor and sensory axons after peripheral nerve injury

Author:

Isaacson Robin H.1,Carrasco Dario I.1,Holliday Hannah1,Kang Seong Su2,Khan Samia1,Kim David1,Liu Xia2,Ye Keqiang3,English Arthur W.1ORCID

Affiliation:

1. Department of Cell Biology Emory University School of Medicine Atlanta Georgia USA

2. Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA

3. Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences Shenzhen Guangdong China

Abstract

AbstractLimited axon regeneration following peripheral nerve injury may be related to activation of the lysosomal protease, asparaginyl endopeptidase (AEP, δ‐secretase) and its degradation of the microtubule associated protein, Tau. Activity of AEP was increased at the site of sciatic nerve transection and repair but blocked in mice treated systemically with a specific AEP inhibitor, compound 11 (CP11). Treatments with CP11 enhanced axon regeneration in vivo. Amplitudes of compound muscle action potentials recorded 4 weeks after nerve transection and repair and 2 weeks after daily treatments with CP11 were double those of vehicle‐treated mice. At that time after injury, axons of significantly more motor and sensory neurons had regenerated successfully and reinnervated the tibialis anterior and gastrocnemius muscles in CP11‐treated mice than vehicle‐treated controls. In cultured adult dorsal root ganglion neurons derived from wild type mice that were treated in vitro for 24 h with CP11, neurites were nearly 50% longer than in vehicle‐treated controls and similar to neurite lengths in cultures treated with the TrkB agonist, 7,8‐dihydroxyflavone (7,8‐DHF). Combined treatment with CP11 and 7,8‐DHF did not enhance outgrowth more than treatments with either one alone. Enhanced neurite outgrowth produced by CP11 was found also in the presence of the TrkB inhibitor, ANA‐12, indicating that the enhancement was independent of TrkB signalling. Longer neurites were found after CP11 treatment in both TrkB+ and TrkB− neurons. Delta secretase inhibition by CP11 is a treatment for peripheral nerve injury with great potential.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3