More (corrective) consecutive saccades after a lesion to the posterior parietal cortex

Author:

Böing Sanne1ORCID,Fabius Jasper H.2,Hakkenberg Marjoleine1,Nijboer Tanja C. W.13,Van der Stigchel Stefan1

Affiliation:

1. Experimental Psychology Helmholtz Institute Utrecht University Utrecht the Netherlands

2. Institute of Neuroscience & Psychology College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow Scotland UK

3. Center of Excellence for Rehabilitation Medicine University Medical Center Utrecht and De Hoogstraat Rehabilitation Utrecht the Netherlands

Abstract

AbstractTo reach a target, primary saccades (S1s) are often followed by (corrective) consecutive saccades (S2, and potentially S3, S4, S5), which are based on retinal and extraretinal feedback. Processing these extraretinal signals was found to be significantly impaired by lesions to the posterior parietal cortex (PPC). Recent studies, however, added a more nuanced view to the role of the PPC, where patients with PPC lesions still used extraretinal signals for S2s and perceptual judgements (Fabius et al., 2020; Rath‐Wilson & Guitton, 2015). Hence, it seems that a PPC lesion is not disrupting extraretinal processing per se. Yet, a lesion might still result in less reliable processing of extraretinal signals. Here, we investigated whether this lower reliability manifests as decreased or delayed S2 initiation. Patients with PPC lesions (n = 7) and controls (n = 26) performed a prosaccade task where the target either remained visible or was removed after S1 onset. When S1 is removed, accurate S2s (corrections of S1 error) rely solely on extraretinal signals. We analysed S2 quantity and timing using linear mixed‐effects modelling and additive hazards analyses. Patients demonstrated slower S1 execution and lower S1 amplitudes than controls, but their S2s still compensated the S1 undershoot, also when they only relied on extraretinal information. Surprisingly, patients showed an increased amount of S2s. This deviation from control behaviour can be seen as suboptimal, but given the decreased accuracy of the primary saccade, it could be optimal for patients to employ more (corrective) consecutive saccades to overcome this inaccuracy.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3