Primary microfossiliferous chert in the Aptian Barra Velha Formation

Author:

Moore Kelsey R.12ORCID,Crémière Antoine13ORCID,Present Theodore M.1ORCID,Barnett Andrew4,Bergmann Kristin D.5,Amthor Joachim67,Grotzinger John1

Affiliation:

1. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA 91125 USA

2. Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD 21218 USA

3. Geo‐Ocean UMR 6538 CNRS‐ Ifremer‐UBO‐UBS Plouzané F‐29280 France

4. Shell UK London SE1 7NA UK

5. Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA

6. Shell Brazil Petróleo Rio de Janeiro 20031 Brazil

7. Division of Earth Sciences and Geography Rhine‐Westphalia Technical University of Aachen Aachen 52064 Germany

Abstract

ABSTRACTThe Barra Velha Formation and other Aptian pre‐salt deposits record the history of the proto‐Atlantic basin and the rifting of Gondwana. Studies have sought to characterize the depositional environment of the basin with a focus on carbonate fabrics and magnesium silicate clays. However, the water chemistry and fluid sources in the basin, the silica cycle, and how the basin evolved over time are not fully constrained. Additionally, current understanding of the microbiota that inhabited this basin is incomplete because microfossils have rarely been identified in pre‐salt deposits, especially on the Brazilian margin. This study describes authigenic chert in the Barra Velha Formation that preserves distinct, organic‐rich structures and textures. The petrographic relationships between the chert and carbonate suggest that both formed as authigenic phases, but their formation was temporally decoupled. These relationships and δ30Si and δ18O data suggest that chert post‐dates the formation and subsequent dissolution of the carbonates, and may have formed from a different fluid. By characterizing the chert–carbonate paragenesis and mechanism of chert formation, this study provides new insights into the fluid sources and complexity of the basin. Together, the results of this research suggest that the chert precipitated as primary, authigenic phases after karstification of the carbonate from a newly introduced, low temperature, freshwater fluid that was chemically distinct from the lake water. The chert preserves organic matter that is compositionally and texturally distinct from the void‐filling bitumen associated with the classically studied carbonate facies. Based on the composition and morphologies of organic structures, this is likely primary organic matter and a morphologically diverse microfossil assemblage preserved in place at the time of chert formation. Thus, this early chert provides new insights into the water chemistry, fluid sources and silica cycle in the basin, and represents a unique taphonomic window that helps us characterize the pre‐salt basin microbiota.

Funder

Simons Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3