PowerRTF: Power Diagram based Restricted Tangent Face for Surface Remeshing

Author:

Yao Yuyou1ORCID,Liu Jingjing1,Fei Yue1,Wu Wenming1,Zhang Gaofeng1ORCID,Yan Dong‐Ming23ORCID,Zheng Liping1ORCID

Affiliation:

1. School of Computer Science and Information Engineering Hefei University of Technology Hefei China

2. State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) & National Laboratory of Pattern Recognition (NLPR) Institute of Automation of the Chinese Academy of Sciences Beijing China

3. School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China

Abstract

AbstractTriangular meshes of superior quality are important for geometric processing in practical applications. Existing approximative CVT‐based remeshing methodology uses planar polygonal facets to fit the original surface, simplifying the computational complexity. However, they usually do not consider surface curvature. Topological errors and outliers can also occur in the close sheet surface remeshing, resulting in wrong meshes. With this regard, we present a novel method named PowerRTF, an extension of the restricted tangent face (RTF) in conjunction with the power diagram, to better approximate the original surface with curvature adaption. The idea is to introduce a weight property to each sample point and compute the power diagram on the tangent face to produce area‐controlled polygonal facets. Based on this, we impose the variable‐capacity constraint and centroid constraint to the PowerRTF, providing the trade‐off between mesh quality and computational efficiency. Moreover, we apply a normal verification‐based inverse side point culling method to address the topological errors and outliers in close sheet surface remeshing. Our method independently computes and optimizes the PowerRTF per sample point, which is efficiently implemented in parallel on the GPU. Experimental results demonstrate the effectiveness, flexibility, and efficiency of our method.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3