A serine carboxypeptidase‐like acyltransferase catalyzes consecutive four‐step reactions of hydrolyzable tannin biosynthesis in Camellia oleifera

Author:

Wang Zhihui12,Chen Xiangxiang3,Zhao Yue1,Jin Didi3,Jiang Changjuan3,Yao Shengbo1,Li Zhu3,Jiang Xiaolan1,Liu Yajun13,Gao Liping13ORCID,Xia Tao1ORCID

Affiliation:

1. State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China

2. Core Facility Center, Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology Shanghai China

3. School of Life Science Anhui Agricultural University Hefei China

Abstract

SUMMARYHydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion‐fragment ion pairs in the feature fragment data obtained using UPLC‐Q‐TOF‐/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C. oleifera were analyzed qualitatively and quantitatively. Correlation analysis between the transcript abundance of serine carboxypeptidase‐like acyltransferases (SCPL‐ATs) and the peak area of galloyl products in Camellia species showed that SCPL3 expression was highly correlated with HT biosynthesis. Enzymatic verification of the recombinant protein showed that CoSCPL3 from C. oleifera catalyzed the four consecutive steps involved in the conversion of digalloylglucose to pentagalloylglucose. We also identified the residues affecting the enzymatic activity of CoSCPL3 and determined that SCPL‐AT catalyzes the synthesis of galloyl glycosides. The findings of this study provide a target gene for germplasm innovation of important cash crops that are rich in HTs, such as C. oleifera, strawberry, and walnut.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3