Knockout of stigmatic ascorbate peroxidase 1 (APX1) delays pollen rehydration and germination by mediating ROS homeostasis in Brassica napus L.

Author:

Liang Xiaomei12,Li Yuanyuan12,Wang Lulin12,Yi Bin1,Fu Tingdong1,Ma Chaozhi12,Dai Cheng12ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan 430070 China

2. Hubei Hongshan Laboratory Wuhan 430070 China

Abstract

SUMMARYThe successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self‐compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS‐scavenging enzymes in the pollen‐stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma‐expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response‐mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ‐Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen‐stigma interaction in B. napus.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3