A broader flight season for Norway's Odonata across a century and a half

Author:

Patten Michael A.1ORCID,Benson Brittany Rae1

Affiliation:

1. Ecology Research Group, Faculty of Biosciences and Aquaculture, Nord University Steinkjer Norway

Abstract

As global climate continues to change, so too will phenology of a wide range of insects. Changes in flight season usually are characterised as shifts to earlier dates or means, with attention less often paid to flight season breadth or whether seasons are now skewed. We amassed flight season data for the insect order Odonata, the dragonflies and damselflies, for Norway over the past century‐and‐a‐half to examine the form of flight season change. By means of Bayesian analyses that incorporated uncertainty relative to annual variability in survey effort, we estimated shifts in flight season mean, breadth, and skew. We focussed on flight season breadth, positing that it will track documented growing season expansion. A specific mechanism explored was shifts in voltinism, the number of generations per year, which tends to increase with warming. We found strong evidence for an increase in flight season breadth but much less for a shift in mean, with any shift of the latter tending toward a later mean. Skew has become rightward for suborder Zygoptera, the damselflies, but not for Anisoptera, the dragonflies, or for the Odonata as a whole. We found weak support for voltinism as a predictor of broader flight season; instead, voltinism acted interactively with use of human‐modified habitats, including decrease in shading (e.g. from timber extraction). Other potential mechanisms that link warming with broadening of flight season include protracted emergence and cohort splitting, both of which have been documented in the Odonata. It is likely that warming‐induced broadening of flight seasons of these widespread insect predators will have wide‐ranging consequences for freshwater ecosystems.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3