Beyond ExaBricks: GPU Volume Path Tracing of AMR Data

Author:

Zellmann Stefan1ORCID,Wu Qi2ORCID,Sahistan Alper3ORCID,Ma Kwan‐Liu2ORCID,Wald Ingo4ORCID

Affiliation:

1. University of Cologne

2. University of California ‐ Davis

3. University of Utah

4. NVIDIA

Abstract

AbstractAdaptive Mesh Refinement (AMR) is becoming a prevalent data representation for HPC, and thus also for scientific visualization. AMR data is usually cell centric (which imposes numerous challenges), complex, and generally hard to render. Recent work on GPU‐accelerated AMR rendering has made much progress towards real‐time volume and isosurface rendering of such data, but so far this work has focused exclusively on ray marching, with simple lighting models and without scattering events or global illumination. True high‐quality rendering requires a modified approach that is able to trace arbitrary incoherent paths; but this may not be a perfect fit for the types of data structures recently developed for ray marching. In this paper, we describe a novel approach to high‐quality path tracing of complex AMR data, with a specific focus on analyzing and comparing different data structures and algorithms to achieve this goal.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference54 articles.

1. ParaView: An End-User Tool for Large-Data Visualization

2. Local adaptive mesh refinement for shock hydrodynamics

3. BergerM. J. OligerJ.: Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations.Journal of Computational Physics(1984). 2

4. p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees

5. ChildsH. BruggerE. WhitlockB. MeredithJ. AhernS. PugmireD. BiagasK. MillerM. HarrisonC. WeberG. H. KrishnanH. FogalT. SandersonA. GarthC. BethelE. W. CampD. RübelO. DurantM. FavreJ. M. NavrátilP.: VisIt: An end-user tool for visualizing and analyzing very large data. InHigh Performance Visualization–Enabling Extreme-Scale Scientific Insight.2012. 2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3