Dissolved silica‐driven dolomite precipitation in the Great Salt Lake, Utah, and its implication for dolomite formation environments

Author:

Fang Yihang1ORCID,Hobbs Franklin1,Yang Yiping2,Xu Huifang1ORCID

Affiliation:

1. Department of Geoscience University of Wisconsin‐Madison 1215 Dayton St. Madison Wisconsin 53706 USA

2. Guangzhou Institute of Geochemistry Chinese Academy of Science Guangzhou 510640 China

Abstract

AbstractSince the discovery of dolomite, numerous attempts have been made to understand its precipitation mechanism at Earth's surface conditions. One such mechanism relies on a relationship with microbial life, where laboratory synthesis experiments have shown that specific organic molecules, such as polysaccharides, exopolymeric substances and hydrogen sulphide can promote dolomite precipitation. Other mechanisms for precipitating dolomite focus on abiotic chemical environments, such as adding dissolved silica, which lower the dehydration energy barrier for the surface Mg2+‐water complex and promote disordered dolomite precipitation. Modern occurrences of dolomite in the Great Salt Lake, Utah, have been studied since the early 20th Century. The distribution of primary dolomite in the Great Salt Lake is spatially heterogeneous, with only the carbonate mud in the South Arm and ridge‐site between desiccation cracks in the North Arm being dominated by dolomite and calcite, while stromatolites in both Arms and ooidal sands in the North Arm are composed entirely of aragonite. It was proposed that dolomite precipitation in the Great Salt Lake was possibly induced by microbial activities such as organic degradation, bacteria sulphate reduction, or other microbial metabolic by‐products. However, these hypotheses could not explain the lack of dolomite in microbial mats, especially in the North Arm, which is constituted by mostly aragonite with no dolomite. Our results suggest that dissolved silica concentration is the primary control for dolomite and Mg‐clay formation in the Great Salt Lake. Even though the North Arm has a much more concentrated Mg and Ca water from lack of freshwater input, dissolved silica levels in the South Arm (>0.5 mm) and the Ridge‐site (ca 0.5 mm) are much higher than in the North Arm (<0.2 mm). Our finding could also provide a new proxy for reconstructing climate changes in the Great Salt Lake area based on dolomite content variation. Phanerozoic dolomite abundance variations may be linked to global CO2 level that facilitates global chemical weathering and dissolved silica input into palaeo‐ocean.

Funder

University of Wisconsin-Madison

Publisher

Wiley

Subject

Stratigraphy,Geology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3