A fungal CFEM‐containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity

Author:

Shang Shengping1ORCID,Liu Guangli1,Zhang Song1,Liang Xiaofei1,Zhang Rong1,Sun Guangyu1

Affiliation:

1. State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant Protection Northwest A&F University Yangling China

Abstract

SummaryColletotrichum fructicola causes a broad range of plant diseases worldwide and secretes many candidate proteinous effectors during infection, but it remains largely unknown regarding their effects in conquering plant immunity. Here, we characterized a novel effector CfEC12 that is required for the virulence of C. fructicola. CfEC12 contains a CFEM domain and is highly expressed during the early stage of host infection. Overexpression of CfEC12 suppressed BAX‐triggered cell death, callose deposition and ROS burst in Nicotiana benthamiana. CfEC12 interacted with apple MdNIMIN2, a NIM1‐interacting (NIMIN) protein that putatively modulates NPR1 activity in response to SA signal. Transient expression and transgenic analyses showed that MdNIMIN2 was required for apple resistance to C. fructicola infection and rescued the defence reduction in NbNIMIN2‐silenced N. benthamiana, supporting a positive role in plant immunity. CfEC12 and MdNPR1 interacted with a common region of MdNIMIN2, indicating that CfEC12 suppresses the interaction between MdNIMIN2 and MdNPR1 by competitive target binding. In sum, we identified a fungal effector that targets the plant salicylic acid defence pathway to promote fungal infection.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3