Getting a grip on how we talk about computational practices in science in settings of teacher learning

Author:

Farris Amy Voss1ORCID,McLaughlin Gözde1ORCID

Affiliation:

1. Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractBackgroundScience teachers' understanding of the roles of computing practices in science frame how they enact scientific computational practices in their teaching and how their students perceive the relationship between computational practices and scientific endeavours.ObjectivesThis critical, integrative review synthesizes teacher learning literature about the role of computational literacy and computing practices in K‐12 science teaching.MethodsWe examined 54 peer‐reviewed articles and analysed the ways the researchers and teacher participants describe the affordances of integrating computational thinking (CT) and other computational practices in science. We characterize how CT and computational practices are framed in relation to scientific learning goals. We identify six primary affordances for integrating computational practices with science that are conveyed to teachers and by teachers, as represented in these studies of teacher learning.Results and ConclusionsThese six perspectives include (1) learning computer science principles, (2) developing CT dispositions, (3) engagement and inclusion in science, (4) taking ownership of science, (5) supporting learning science content, and (6) participating in computational practice as a form of scientific epistemic practice. Our analysis indicates that computational thinking and computational practices are often integrated in science in order to teach something about computing (e.g., Perspective 1), rather than to support learners' scientific work. Only the 29 articles coded for the sixth perspective—that is, in service of epistemic aims in science—demonstrate commitment to students' uses of computational ideas and practices as epistemic tools to participate in the sensemaking work of science.TakeawaysComparison of Perspectives 5 and 6 illustrates the nuance between computational practices in science that reify something students have already “figured out,” rather than those that serve epistemic goals. Perspective 6 encapsulates the deep synergy among (1) the reflexive nature of computing with scientific ideas and (2) computing as a central practice in science and engineering. We contend that a more focused message of computational practices in service of scientific sensemaking goals is necessary if we expect teachers to enact CT and related computational practices in their classrooms.

Publisher

Wiley

Reference115 articles.

1. Developing an introductory computer science course for pre‐service teachers;Adler R. F.;Journal of Technology and Teacher Education,2020

2. Enhancing future K-8 teachers’ computational thinking skills through modeling and simulations

3. Introduction to Computational Thinking

4. Teacher candidates' key understandings about computational thinking in mathematics and science education;Araujo R. C.;Journal of Computers in Mathematics and Science Teaching,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3