Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade‐offs

Author:

Scharfenstein Hugo J.12ORCID,Alvarez‐Roa Carlos2ORCID,Peplow Lesa M.2,Buerger Patrick13ORCID,Chan Wing Yan1ORCID,van Oppen Madeleine J. H.12ORCID

Affiliation:

1. School of BioSciences The University of Melbourne Parkville Victoria Australia

2. Australian Institute of Marine Science Townsville Queensland Australia

3. Applied BioSciences Macquarie University Sydney New South Wales Australia

Abstract

AbstractDespite the relevance of heat‐evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6–5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat‐evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade‐offs in growth rates were observed for the heat‐evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat‐evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat‐evolved D. trenchii strain indicate that experimental evolution resulted in further trade‐offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat‐evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.

Funder

Australian Research Council

Paul G. Allen Family Foundation

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3