Drought thresholds that impact vegetation reveal the divergent responses of vegetation growth to drought across China

Author:

Sun Mingze1ORCID,Li Xiangyi1ORCID,Xu Hao1ORCID,Wang Kai1ORCID,Anniwaer Nazhakaiti1ORCID,Hong Songbai1ORCID

Affiliation:

1. Institute of Carbon Neutrality, Sino‐French Institute for Earth System Science, College of Urban and Environmental Sciences Peking University Beijing China

Abstract

AbstractIdentifying droughts and accurately evaluating drought impacts on vegetation growth are crucial to understanding the terrestrial carbon balance across China. However, few studies have identified the critical drought thresholds that impact China's vegetation growth, leading to large uncertainty in assessing the ecological consequences of droughts. In this study, we utilize gridded surface soil moisture data and satellite‐observed normalized difference vegetation index (NDVI) to assess vegetation response to droughts in China during 2001–2018. Based on the nonlinear relationship between changing drought stress and the coincident anomalies of NDVI during the growing season, we derive the spatial patterns of satellite‐based drought thresholds (T SM) that impact vegetation growth in China via a framework for detecting drought thresholds combining the methods of feature extraction, coincidence analysis, and piecewise linear regression. The T SM values represent percentile‐based drought threshold levels, with smaller T SM values corresponding to more negative anomalies of soil moisture. On average, T SM is at the 8.7th percentile and detectable in 64.4% of China's vegetated lands, with lower values in North China and Jianghan Plain and higher values in the Inner Mongolia Plateau. Furthermore, T SM for forests is commonly lower than that for grasslands. We also find that agricultural irrigation modifies the drought thresholds for croplands in the Sichuan Basin. For future projections, Earth System Models predict that more regions in China will face an increasing risk for ecological drought, and the Hexi Corridor‐Hetao Plain and Shandong Peninsula will become hotspots of ecological drought. This study has important implications for accurately evaluating the impacts of drought on vegetation growth in China and provides a scientific reference for the effective ecomanagement of China's terrestrial ecosystems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3