Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis

Author:

Shen Jing1,Pan Julong1,Yu Gang1,Cai Hui1,Xu Hua1,Yan Hanfei1,Feng Yu123ORCID

Affiliation:

1. The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University Suzhou China

2. The University of New South Wales Sydney New South Wales Australia

3. The University of Melbourne Melbourne Victoria Australia

Abstract

AbstractThis study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome‐wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High‐Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two‐sample Mendelian randomization analyses, analysis under the multiplicity‐complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co‐localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.

Funder

Science and Technology Program of Suzhou

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3