Effect of the closed‐loop hippocampal low‐frequency stimulation on seizure severity, learning, and memory in pilocarpine epilepsy rat model

Author:

Zare Meysam1,Rezaei Mahmoud1,Nazari Milad2,Kosarmadar Nastaran1,Faraz Mona1,Barkley Victoria3,Shojaei Amir1,Raoufy Mohammad Reza1ORCID,Mirnajafi‐Zadeh Javad14ORCID

Affiliation:

1. Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran

2. Department of Technology, Electrical Engineering Sharif University Tehran Iran

3. Department of Anesthesia and Pain Management, Toronto General Hospital University Health Network Toronto Ontario Canada

4. Institute for Brain Sciences and Cognition Tarbiat Modares University Tehran Iran

Abstract

AbstractAimsIn this study, the anticonvulsant action of closed‐loop, low‐frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated.MethodsEpilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test.ResultsApplying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre‐ictal, ictal, and post‐ictal periods. Meanwhile, DBS increased the post‐ictal‐to‐pre‐ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post‐ictal‐to‐pre‐ictal ratio of coherence. In addition, DBS increased the hippocampal‐mPFC coupling in pre‐ictal period and decreased the coupling in the ictal and post‐ictal periods.ConclusionApplying closed‐loop, low‐frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low‐frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non‐seizure state in subjects that received DBS.

Funder

Tarbiat Modares University

National Institute for Medical Research Development

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3