Unravelling the interplay of different traits and parameters related to nitrogen use efficiency in wheat for climate‐resilient agriculture

Author:

Gayatri 1,Mandal Puja2,Venkatesh Karnam3,Mandal Pranab Kumar1ORCID

Affiliation:

1. ICAR‐National Institute for Plant Biotechnology New Delhi India

2. Tamil Nadu Agricultural University Coimbatore Tamil Nadu India

3. ICAR‐Indian Institute of Millets Research Hyderabad Telangana India

Abstract

AbstractEnhancing Nitrogen Use Efficiency (NUE) is extremely important towards mitigating climate change, especially in wheat where the NUE is less than 50%. Hence, optimizing grain yield under reduced application of nitrogenous fertilizer is a significant challenge. To address this challenge, a comprehensive study was conducted to investigate various agronomic traits and morphological, biochemical and molecular parameters related to NUE. This study explored their interrelationships and effects on grain yield, providing novel insights that were not previously reported. A set of 278 diverse wheat genotypes were assessed, encompassing eight NUE‐related field traits. All traits' values were reduced under stressed N (ranging from 7.5% to 77.5%) except Nitrogen Utilization Efficiency (NUtE) and NUE. Data analysis showed a significant positive correlation between grain yield and all other NUE‐related traits (r2 value ranged from .23 to 1.00), highlighting their relevance in comprehending the biological NUE of wheat plants. Principal component analysis (PCA) also revealed that N at head and N at harvest were more connected with gain yield, NUE and biomass under the optimum N condition, but less connected with gain yield and NUE under the stressed N condition. To complement the field data, representative genotypes were further subjected to a hydroponics experiment under absolute N control to study the different morphological parameters, photosynthetic pigments and the performance of essential N‐ and C‐metabolizing enzymes at the seedling stage. N stress had a detrimental impact on the majority of the parameters (−0.84% to −79.8%). Nitrite reductase (NiR), glutamate dehydrogenase (GDH) and isocitrate dehydrogenase (ICDH) enzymes as well as root length (RL), root fresh weight (RFW) and CS transcript, were positively affected by 5.9%–35.6%. The correlation analysis highlighted the substantial influence of four key N‐metabolizing enzymes, namely nitrate reductase (NR), glutamine synthetase (GS), glutamate oxo‐glutarate aminotransferase (GOGAT), and GDH on grain yield. Additionally, this study highlighted the direct and indirect associations between seedling parameters and field traits, where shoot and root length were found to be most significant for N acquisition, especially under N stress. In conclusion, these findings offer valuable insights into the intricate network of traits and parameters influencing wheat grain yield under varying N regimes.

Funder

Department of Biotechnology, Government of West Bengal

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3