The miR156b–GmSPL2b module mediates male fertility regulation of cytoplasmic male sterility‐based restorer line under high‐temperature stress in soybean

Author:

Ding Xianlong1,Guo Jinfeng1,Lv Menglin1,Wang Hongjie1,Sheng Ying1,Liu Ying1,Gai Junyi1,Yang Shouping1ORCID

Affiliation:

1. Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio‐breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production College of Agriculture, Nanjing...

Abstract

SummaryHigh‐temperature (HT) stress at flowering stage causes significant damage to soybean, including pollen abortion and fertilization failure, but few genes involved in male fertility regulation under HT stress in soybean have been characterized. Here, we demonstrated that miR156b–GmSPL2b module involved in male fertility regulation of soybean cytoplasmic male sterility (CMS)‐based restorer line under HT stress. Overexpression of miR156b decreased male fertility in soybean CMS‐based restorer line and its hybrid F1 with CMS line under HT stress. RNA‐seq analysis found that miR156b mediated male fertility regulation in soybean under HT stress by regulating the expression of pollen development and HT response related genes. Metabolomic analysis of miR156bOE revealed reduction in flavonoid content under HT stress. Integrated transcriptomic and metabolomic analysis showed that the overexpression of miR156b caused flavonoid metabolism disorder in soybean flower bud under HT stress. Knockout of GmSPL2b also decreased the thermotolerance of soybean CMS‐based restorer line during flowering. Moreover, GmSPL2b turned out to be directly bounded to the promoter of GmHSFA6b. Further verification indicated that GmHSFA6b overexpression enhanced HT tolerance in Arabidopsis during flowering. Substance content and gene expression analysis revealed that miR156b–GmSPL2b may mediate reactive oxygen species clearance by regulating flavonoid metabolism, thus participating in the regulation of male fertility in soybean under HT stress. This study not only provided important progress for understanding the molecular mechanism of miR156b–GmSPL2b regulating the male fertility of soybean CMS‐based restorer line under HT stress, but also provided genetic resources and theoretical basis for creating HT‐tolerant strong restorer lines.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3