Affiliation:
1. Comisión Nacional de Energía Atómica Buenos Aires Argentina
2. Instituto de Astronomía y Física del Espacio (UBA‐CONICET) Buenos Aires Argentina
3. Facultad de Ciencias Exactas y Naturales UBA Buenos Aires Argentina
4. Universidad Nacional de Tres de Febrero Buenos Aires Argentina
Abstract
AbstractIt has been proposed that transient and reversible phenotypic changes could modify the response of bacteria to germicidal radiation, eventually leading to tailing in the survival curves. If this were the case, changes in susceptibility to radiation would reflect variations in gene expression and should only occur in cells in which gene expression is active. To obtain experimental evidence supporting the involvement of phenotypic changes in the origin of tailing, we studied changes in the susceptibility to radiation of cells able to survive high fluences, using split irradiations. Stationary phase cells of Enterobacter cloacae and Deinococcus radiodurans, in which gene expression is active, and spores of Bacillus subtilis, which are dormant cells without active gene expression, were used as microbial models. While cells of E. cloacae and D. radiodurans became susceptible after surviving exposures to high fluences, tolerant spores exhibited unchanged response to radiation. The results can be interpreted assuming that noise in gene expression modifies bacterial susceptibility to radiation, and tailing is the result of intrinsic phenomena of bacterial physiology rather than a technical artifact. For either theoretical or practical purposes, deviations from simple exponential decay kinetics should be considered in estimations of the effects of germicidal radiation at high fluences.
Subject
Physical and Theoretical Chemistry,General Medicine,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献