Moments of cross‐sectional stock market returns and the German business cycle

Author:

Döpke Jörg1ORCID,Müller Karsten2,Tegtmeier Lars1ORCID

Affiliation:

1. Department of Business Administration and Information Sciences University of Applied Sciences Merseburg Merseburg Germany

2. German Aerospace Center (DLR) Institute of Networked Energy Systems Stuttgart Germany

Abstract

AbstractBased on monthly data covering the period from 1987 to 2021, we analyse whether cross‐sectional moments of stock market returns may provide information about the future position of the German business cycle. We apply in‐sample forecasting regressions with and without leading indicators as control variables, pseudo‐out‐of‐sample exercises, autoregressive distributed lag models, and impulse‐response functions estimated by local projections. We find in‐sample predictive power of the first and third cross‐section moments for the future growth of industrial production, even if one controls for well‐established leading indicators for the German business cycle. Out‐of‐sample tests show that these variables reduce the relative mean squared error compared with benchmark models. We do not find a long‐run relation between the moment series and industrial production. The dynamic response of industrial production to a shock on the cross‐section moments is in line with the other results.

Publisher

Wiley

Subject

Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3