Salmon lice biology, environmental factors, and smolt behaviour with implications for the Norwegian salmon farming management system: A critical review

Author:

van Nes Solveig1,Imsland Albert Kjartan Dagbjartarson23ORCID,Jones Simon R. M.4ORCID

Affiliation:

1. Marine Prospects AS Oslo Norway

2. Akvaplan‐niva Iceland Office Kópavogur Iceland

3. Department of Biological Sciences University of Bergen, High Technology Centre Bergen Norway

4. Fisheries and Oceans Canada, Pacific Biological Station Nanaimo British Columbia Canada

Abstract

AbstractIn 2017, a new regulatory management system, the traffic light system (TLS), was implemented to estimate the effects of salmon lice from Norwegian salmon aquaculture on marine survival of wild Atlantic salmon and forms the basis of aquaculture capacity regulation. The TLS relies on observational data and a set of models to estimate the risk for negative impact on wild salmon populations. This review of the literature that forms the basis for the TLS as well as other relevant studies is presented in the context of the currently practiced TLS and suggestions are made for immediate and long‐term improvements. The main findings of this review are that: (1) assumed timing and duration of smolt migration contribute to unreliable observational and modelled data and overestimates of infection pressure; (2) production of lice larvae from farmed salmon is overestimated; (3) TLS model systems rely on or are calibrated by the same potentially flawed data; (4) lice‐associated mortality in wild salmon smolts may be overestimated; and (5) lice infection levels on farms are not associated with measurable effects on wild salmon. Recommendations to improve the accuracy and reliability of the TLS, and hence its environmental efficiency include the more complete use of available biological and physical environmental variables, adjusting the time period that observational data are registered and modelled data are integrated, adjusting the interpretation of data including recognition of uncertainty in model outcomes, and use of more realistic assumptions concerning lice‐induced mortality thresholds.

Funder

Fiskeri - og havbruksnæringens forskningsfond

Publisher

Wiley

Reference118 articles.

1. The Ocean Economy in 2030

2. Norwegian Ministries.Blue Opportunities. The Norwegian Government's updated ocean strategy. 50.2019.

3. Food and Agriculture Organization of the United Nations (FAO).Strategic Framework 2022‐31. 39.2021.

4. Salmon lice - impact on wild salmonids and salmon aquaculture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3