An artificial intelligence algorithm for co‐clustering to help in pharmacovigilance before and during the COVID‐19 pandemic

Author:

Destere Alexandre12ORCID,Marchello Giulia2,Merino Diane1,Othman Nouha Ben1,Gérard Alexandre O.1,Lavrut Thibaud1,Viard Delphine1,Rocher Fanny1,Corneli Marco3,Bouveyron Charles2,Drici Milou‐Daniel1ORCID

Affiliation:

1. Department of Pharmacology and Pharmacovigilance Center Université Côte d'Azur Medical Centre Nice France

2. Université Côte d'Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai team Nice France

3. Université Côte d'Azur, Inria, Maison de la Modélisation des Simulations et des Interactions (MSI), MAASAI team Nice France

Abstract

AbstractAimsMonitoring drug safety in real‐world settings is the primary aim of pharmacovigilance. Frequent adverse drug reactions (ADRs) are usually identified during drug development. Rare ones are mostly characterized through post‐marketing scrutiny, increasingly with the use of data mining and disproportionality approaches, which lead to new drug safety signals. Nonetheless, waves of excessive numbers of reports, often stirred up by social media, may overwhelm and distort this process, as observed recently with levothyroxine or COVID‐19 vaccines. As human resources become rarer in the field of pharmacovigilance, we aimed to evaluate the performance of an unsupervised co‐clustering method to help the monitoring of drug safety.MethodsA dynamic latent block model (dLBM), based on a time‐dependent co‐clustering generative method, was used to summarize all regional ADR reports (n = 45 269) issued between 1 January 2012 and 28 February 2022. After analysis of their intra and extra interrelationships, all reports were grouped into different cluster types (time, drug, ADR).ResultsOur model clustered all reports in 10 time, 10 ADR and 9 drug collections. Based on such clustering, three prominent societal problems were detected, subsequent to public health concerns about drug safety, including a prominent media hype about the perceived safety of COVID‐19 vaccines. The dLBM also highlighted some specific drug–ADR relationships, such as the association between antiplatelets, anticoagulants and bleeding.ConclusionsCo‐clustering and dLBM appear as promising tools to explore large pharmacovigilance databases. They allow, ‘unsupervisedly’, the detection, exploration and strengthening of safety signals, facilitating the analysis of massive upsurges of reports.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3