Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning

Author:

Sánchez Miller Ruiz1,Silva Carlos Augusto Alves Cardoso1ORCID,Demattê José Alexandre Melo2ORCID,Mendonça Fernando Campos1ORCID,da Silva Marcelo Andrade3ORCID,Romanelli Thiago Libório1ORCID,Fiorio Peterson Ricardo1ORCID

Affiliation:

1. Graduate Program on Agricultural Systems Engineering “Luiz de Queiroz” College of Agriculture, University of São Paulo Piracicaba Brazil

2. Department of Soil Sciences “Luiz de Queiroz” College of Agriculture, University of São Paulo Piracicaba Brazil

3. Department of Exact Sciences “Luiz de Queiroz” College of Agriculture, University of São Paulo Piracicaba Brazil

Abstract

AbstractChlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3