In vitro PK/PD modeling of tyrosine kinase inhibitors in non‐small cell lung cancer cell lines

Author:

Wanika Linda1,Evans Neil D.1,Johnson Martin2,Tomkinson Helen3,Chappell Michael J.1

Affiliation:

1. School of Engineering University of Warwick Coventry UK

2. MSD London UK

3. Limina Clinical Pharmacology Warrington UK

Abstract

AbstractTyrosine kinase inhibitors (TKIs) are routinely prescribed for the treatment of non‐small cell lung cancer (NSCLC). As with all medications, patients can experience adverse events due to TKIs. Unfortunately, the relationship between many TKIs and the occurrence of certain adverse events remains unclear. There are limited in vivo studies which focus on TKIs and their effects on different regulation pathways. Many in vitro studies, however, that investigate the effects of TKIs observe additional changes, such as changes in gene activations or protein expressions. These studies could potentially help to gain greater understanding of the mechanisms for TKI induced adverse events. However, in order to utilize these pathways in a pharmacokinetic/pharmacodynamic (PK/PD) framework, an in vitro PK/PD model needs to be developed, in order to characterize the effects of TKIs in NSCLC cell lines. Through the use of ordinary differential equations, cell viability data and nonlinear mixed effects modeling, an in vitro TKI PK/PD model was developed with estimated PK and PD parameter values for the TKIs alectinib, crizotinib, erlotinib, and gefitinib. The relative standard errors for the population parameters are all less than 25%. The inclusion of random effects enabled the model to predict individual parameter values which provided a closer fit to the observed response. It is hoped that this model can be extended to include in vitro data of certain pathways that may potentially be linked with adverse events and provide a better understanding of TKI‐induced adverse events.

Publisher

Wiley

Reference50 articles.

1. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer

2. Targeted therapy for non‐small cell lung cancer: current standards and the promise of the future;Chan BA;Transl Lung Cancer Res,2015

3. Angiogenesis inhibition as a therapeutic strategy in non‐small cell lung cancer (NSCLC);Hall Richard D;Transl Lung Cancer Res,2015

4. Epidermal growth factor receptor family in lung cancer and premalignancy

5. Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3