Affiliation:
1. Department of Clinical Laboratory LongYan First Affiliated Hospital of Fujian Medical University Longyan Fujian China
2. Emergency Department, LongYan People Hospital of Fujian Longyan Fujian China
Abstract
AbstractLung adenocarcinoma (LUAD) is a serious threat to public health and is accompanied by increased morbidity and mortality worldwide. Neuronal PAS domain protein2 (NPAS2) has been confirmed as an oncogene in LUAD; however, little is known about its molecular mechanism. Here, the expression level of NPAS2 was detected in LUAD cell lines and 16HBE cells. Gain‐ and loss‐of‐function experiments were performed. Cell Counting Kit‐8, colony formation, flow cytometry, wound‐healing and Transwell assays were conducted to assess cell proliferation, apoptosis, migration and invasion, respectively. Reprogramming of glucose metabolism was evaluated via oxygen consumption rate (OCR), complexes activities, lactic production and glucose consumption. The expression of critical proteins was examined by western blot. We demonstrated aberrant upregulation of NPAS2 and β‐arrestin‐1 (ARRB1) in LUAD cell lines. ARRB1 was found to be a critical transcription factor of NPAS2 with binding sites within the promoter region of NPAS2, thereby causing its transcriptional activation. Functional experiments revealed that NPAS2 depletion significantly inhibited the malignant behaviours of A549 cells by suppressing cell proliferation, migration, invasion and epithelial‐mesenchymal transition and promoting cell apoptosis. Meanwhile, NPAS2 depletion increased OCR and activities of complexes (I, II, III and V), and reduced lactic acid production and glucose uptake in A549 cells, indicating that NPAS2 depletion inhibited aerobic glycolysis, accompanied by reduced expression of glycolytic enzymes. However, the changes caused by NPAS2 knockdown were partly restored by ARRB1 overexpression. In conclusion, our study suggests that ARRB1 could transcriptionally activate NPAS2, facilitating malignant activities and glycolysis, and ultimately promoting the progression of LUAD, proving a novel therapeutic strategy for the treatment of LUAD.