Synergic actions of botulinum neurotoxin A and oxaliplatin on colorectal tumour cell death through the upregulation of TRPM2 channel‐mediated oxidative stress

Author:

Demir Sıdıka1,Duman İpek1ORCID,Nazıroğlu Mustafa234ORCID

Affiliation:

1. Department of Medical Pharmacology, School of Medicine Necmettin Erbakan University Konya Turkey

2. Neuroscience Research Center Suleyman Demirel University Isparta Turkey

3. BSN Health Analyses, Innov., Consult., Org., Agricul., Ltd Isparta Turkey

4. Department of Biophysics, School of Medicine Suleyman Demirel University Isparta Turkey

Abstract

AbstractBotulinum neurotoxin A (BoNT) is being shown to have anticancer action as a potential adjuvant treatment. The transient receptor potential (TRP) melastatin 2 (TRPM2) stimulator action of BoNT was reported in glioblastoma cells, but not in colorectal cancer (HT29) cells. By activating TRPM2, we evaluated the impacts of BoNT and oxaliplatin (OXA) incubations on oxidant and apoptotic values within the HT29 cells. Control, BoNT (5 IU for 24 h), OXA (50 μM for 24 h) and their combinations were induced. We found that TRPM2 protein is upregulated and mediates enhanced BoNT and OXA‐induced Ca2+ entry in cells as compared to control cells. The increase of free reactive oxygen species (ROS), but the decrease of glutathione is the main ROS responsible for TRPM2 activation on H29 exposure to oxidative stress. BoNT and OXA‐mediated Ca2+ entry through TRPM2 stimulation in response to H2O2 results in mitochondrial Ca2+ overload, followed by mitochondrial membrane depolarization, apoptosis and caspase‐3/‐8/‐9, although they were diminished in the TRPM2 antagonist groups (N‐(p‐amylcinnamoyl)anthranilic acid and carvacrol). In conclusion, by increasing the susceptibility of HT29 tumour cells to oxidative stress and apoptosis, the combined administration of BoNT and OXA via the targeting of TRPM2 may offer a different approach to kill the tumour cells.

Funder

Necmettin Erbakan Üniversitesi

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3