Docosahexaenoic acid alleviates the excessive degradation of extracellular matrix in the nucleus pulposus by reducing the content of lncRNA NEAT1 to prevent the progression of intervertebral disc degeneration

Author:

Shang Liang1,Ma Hui2,Zhang Xiao1,Mao RunZe1,Ma CunYou1,Ruan Zhi2

Affiliation:

1. Department of Spine Surgery, School of Medicine ShiHeZi University Xinjiang China

2. Department of Spine Surgery, First Affiliated Hospital, School of Medicine Shihezi University Xinjiang China

Abstract

AbstractThe pathogenesis of intervertebral disc degeneration (IVDD), as a multifactorial disease, has not been fully elucidated. However, damage to the stress‐bearing system in the intervertebral disc (IVD) mediated by the excessive decomposition of extracellular matrix (ECM) in nucleus pulposus (NP) cells caused by local stimulation is widely considered the core pathological process underlying IVDD. Docosahexaenoic acid (DHA) plays a protective role in various chronic diseases. However, whether it can have such effects in IVDD has not been clearly reported. In recent years, in‐depth research on the role of long non‐coding RNA (lncRNA) nuclear‐enriched transcript 1 (NEAT1) in various diseases has continuously emerged, but such research in the field of IVD is not sufficient. In this study, tert‐butyl hydroperoxide (TBHP) was used to induce oxidative stress in human NP cells and construct a cell model of excessive ECM decomposition in vitro. A plasmid over‐expressing lncRNA NEAT1 was introduced into human NP cells to establish an NP cell model. For this specific experiment, Cell Counting Kit 8 was used to explore the timing and concentration of DHA and TBHP activity. A common gene chip platform was also used to select potential lncRNAs. Western blot and immunofluorescence assays were used to detect the expression of ECM‐related proteins in NP cells in each group. Quantitative real‐time polymerase chain reaction was used to detect the expression of lncRNA NEAT1 in NP cells in each group. On this basis, we proved that DHA alleviates excessive degradation of the ECM in NP cells in response to oxidative stress by reducing the content of lncRNA NEAT1. In conclusion, our study reveals the mechanism through which DHA relieves excessive ECM decomposition in NP cells and provides a potential new idea for the treatment of IVDD in clinical practice.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physiology (medical),Pharmacology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3