Heat wave‐induced microbial thermal trait adaptation and its reversal in the Subarctic

Author:

Tájmel Dániel12ORCID,Cruz‐Paredes Carla12ORCID,Rousk Johannes12ORCID

Affiliation:

1. Microbial Ecology, Department of Biology Lund University Lund Sweden

2. Microbial Biochemistry in Lund (MBLU), Department of Biology Lund University Lund Sweden

Abstract

AbstractClimate change predictions suggest that arctic and subarctic ecosystems will be particularly affected by rising temperatures and extreme weather events, including severe heat waves. Temperature is one of the most important environmental factors controlling and regulating microbial decomposition in soils; therefore, it is critical to understand its impact on soil microorganisms and their feedback to climate warming. We conducted a warming experiment in a subarctic birch forest in North Sweden to test the effects of summer heat waves on the thermal trait distributions that define the temperature dependences for microbial growth and respiration. We also determined the microbial temperature dependences 10 and 12 months after the heat wave simulation had ended to investigate the persistence of the thermal trait shifts. As a result of warming, the bacterial growth temperature dependence shifted to become warm‐adapted, with a similar trend for fungal growth. For respiration, there was no shift in the temperature dependence. The shifts in thermal traits were not accompanied by changes in α‐ or β‐diversity of the microbial community. Warming increased the fungal‐to‐bacterial growth ratio by 33% and decreased the microbial carbon use efficiency by 35%, and both these effects were caused by the reduction in moisture the warming treatments caused, while there was no evidence that substrate depletion had altered microbial processes. The warm‐shifted bacterial thermal traits were partially restored within one winter but only fully recovered to match ambient conditions after 1 year. To conclude, a summer heat wave in the Subarctic resulted in (i) shifts in microbial thermal trait distributions; (ii) lower microbial process rates caused by decreased moisture, not substrate depletion; and (iii) no detectable link between the microbial thermal trait shifts and community composition changes.

Funder

Danmarks Frie Forskningsfond

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3