Affiliation:
1. University of Texas at Austin
Abstract
Developing categorization schemes involves discovering structures in the world that support a learner's goals. Existing models of category learning, such as exemplar and prototype models, neglect the role of goals in shaping conceptual organization. Here, a clustering approach is discussed that reflects the joint influences of the environment and goals in directing category acquisition. Clusters are a flexible representational medium that exhibits properties of exemplar, prototype, and rule-based models. Clusters reflect the natural bundles of correlated features present in our environment. The clustering model Supervised and Unsupervised Stratified Incremental Adaptive Network (SUSTAIN) operates by assuming the world has a simple structure and adding complexity (i.e., clusters) when existing clusters fail to satisfy the learner's goals and thus elicit surprise. Although simple, this operation is sufficient to address findings from numerous laboratory and cross-cultural categorization studies.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献