Sustainable innovation: Additive manufacturing and the emergence of a cyclical take‐make‐transmigrate process at a pioneering industry–university collaboration

Author:

Rose James R.1ORCID,Bharadwaj Neeraj2ORCID

Affiliation:

1. Institute for Smart Structures, College of Architecture and Design, University of Tennessee Knoxville Tennessee USA

2. Haslam College of Business, University of Tennessee Knoxville Tennessee USA

Abstract

AbstractInnovation experts posit that digital technologies—such as additive manufacturing (AM)—can address societal challenges and change the nature of work and collaboration. In recognition, this special issue encourages researchers to investigate how AM can be leveraged to reduce environmental externalities and devote greater attention to the production of 3D printed items. This article integrates academic research on new product development and the cradle‐to‐cradle philosophy with insights gleaned from long‐term case observations across a series of large‐scale AM projects to advance that 3D printing can unleash three pivotal adaptations to the traditional conception‐development‐launch ecosystem. Specifically, our direct participation in designing and building multiple 3D printed products reveals that: (1) spent products can possess valuable ingredient materials that can be repurposed, (2) the reduced structural strength of the reclaimed material can be a positive force insofar as spawning innovation in a new product category, and (3) manufacturing should appear as an independent stage in new product development. On this last point, our completed projects align with recent observations that newer AM technologies can make prototyping and manufacturing products easier, faster, and less expensive. Accordingly, we advance a cyclical sustainable innovation process, which consists of ideation, development, AM output (i.e., manufacturing), and material reclamation. This research is both theoretically meaningful and pragmatically useful. It addresses knowledge gaps regarding AM in the academic literature and spawns new research questions for innovation scholars. For managers, it provides a path to supplant the wasteful take‐make‐dispose production model with the more efficient and effective take‐make‐transmigrate approach that we deem an innovation loop. Specifically, our final built project—a 3D designed and printed chair that uses polymers from the spent chassis of a 3D printed car—serves as a proof of concept that AM can be a catalyst to a paradigmatic shift in how products are made.

Publisher

Wiley

Subject

Management of Technology and Innovation,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3