Where digital meets physical innovation: Reverse salients and the unrealized dreams of3Dprinting

Author:

Rayna Thierry1ORCID,West Joel23ORCID

Affiliation:

1. i³‐CRG École Polytechnique, CNRS, Institut polytechnique de Paris Palaiseau France

2. Hildegard College Costa Mesa California USA

3. Riggs School of Applied Life Sciences Keck Graduate Institute Claremont United States

Abstract

AbstractFor more than three decades, enthusiasts have predicted that direct manufacturing enabled by 3D printing would inevitably supplant traditional manufacturing methods. Alas, for nearly as long, these utopian predictions have failed to materialize. One reason is a flawed assumption that hybrid digital‐physical systems such as 3D printing would advance as rapidly as purely digital innovations enabled by Moore's law. Instead, like other examples of cyber‐physical systems (CPSs), technological progress in 3D printing faces inherent limitations that are emblematic of the differences between CPSs and purely digital innovations. As with any complex CPS, improved performance of a 3D printing system has been limited by that of its key components—the sort of limiting problem previously defined as a reverse salient. Unlike previously studied technologies, several reverse salients for 3D printing performance have neither resolved nor signs of resolving soon. Here we analyze these key reverse salients, and show how they have hampered the suitability of 3D printing for direct manufacturing and other predicted applications. We contrast predicted versus actual capabilities for 3D printing‐enabled transformation in six key areas: product innovation, mass customization, home fabrication, distributed manufacturing, supply chain optimization and business model innovation. From this, we suggest opportunities for greater realism in future 3D printing research, as well as broader implications for our understanding of CPSs and reverse salients.

Publisher

Wiley

Subject

Management of Technology and Innovation,Strategy and Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3