Dermal stiffness governs the topography of the epidermis and the underlying basement membrane in young and old human skin

Author:

Roig‐Rosello Eva12,Dayan Guila1,Bovio Simone34ORCID,Manissier Patricia2,Errazuriz Elisabeth5,Rousselle Patricia1ORCID

Affiliation:

1. Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique CNRS UMR 5305, Université de Lyon Lyon France

2. Native Laboratoire Bezons France

3. RDP Université de Lyon, ENS de Lyon, UCBL1, INRAE, CNRS Lyon France

4. PLATIM‐LyMIC Université de Lyon, ENS de Lyon, Inserm, CNRS Lyon France

5. Ciqle, Faculté de Médecine Lyon‐Est Lyon France

Abstract

AbstractThe epidermis is a stratified epithelium that forms the outer layer of the skin. It is composed primarily of keratinocytes and is constantly renewed by the proliferation of stem cells and their progeny that undergo terminal differentiation as they leave the basal layer and migrate to the skin surface. Basal keratinocytes rest on a basement membrane composed of an extracellular matrix that controls their fate via integrin‐mediated focal adhesions and hemidesmosomes which are critical elements of the epidermal barrier and promote its regenerative capabilities. The distribution of basal cells with optimal activity provides the basement membrane with its characteristic undulating shape; this configuration disappears with age, leading to epidermal weakness. In this study, we present an in‐depth imaging analysis of basal keratinocyte anchorage in samples of human skin from participants across the age spectrum. Our findings reveal that skin aging is associated with the depletion of hemidesmosomes that provide crucial support for stem cell maintenance; their depletion correlates with the loss of the characteristic basement membrane structure. Atomic force microscopy studies of skin and in vitro experiments revealed that the increase in tissue stiffness observed with aging triggers mechanical signals that alter the basement membrane structure and reduce the extent of basal keratinocyte anchorage, forcing them to differentiate. Genomic analysis revealed that epidermal aging was associated with mechanical induction of the transcription factor Krüppel‐like factor 4. The altered mechanical properties of tissue being a new hallmark of aging, our work opens new avenues for the development of skin rejuvenation strategies.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3