Transcriptional changes are tightly coupled to chromatin reorganization during cellular aging

Author:

Braunger Jana M.1ORCID,Cammarata Louis V.12,Sornapudi Trinadha Rao3,Uhler Caroline14ORCID,Shivashankar G. V.35

Affiliation:

1. Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Massachusetts USA

2. Department of Statistics Harvard University Cambridge Massachusetts USA

3. Division of Biology and Chemistry Paul Scherrer Institute Villigen Switzerland

4. Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge Massachusetts USA

5. Department of Health Sciences and Technology ETH Zurich Zurich Switzerland

Abstract

AbstractHuman life expectancy is constantly increasing and aging has become a major risk factor for many diseases, although the underlying gene regulatory mechanisms are still unclear. Using transcriptomic and chromosomal conformation capture (Hi‐C) data from human skin fibroblasts from individuals across different age groups, we identified a tight coupling between the changes in co‐regulation and co‐localization of genes. We obtained transcription factors, cofactors, and chromatin regulators that could drive the cellular aging process by developing a time‐course prize‐collecting Steiner tree algorithm. In particular, by combining RNA‐Seq data from different age groups and protein–protein interaction data we determined the key transcription regulators and gene regulatory changes at different life stage transitions. We then mapped these transcription regulators to the 3D reorganization of chromatin in young and old skin fibroblasts. Collectively, we identified key transcription regulators whose target genes are spatially rearranged and correlate with changes in their expression, thereby providing potential targets for reverting cellular aging.

Funder

National Center for Complementary and Integrative Health

Office of Naval Research

Simons Foundation

Publisher

Wiley

Subject

Cell Biology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3