Increasing Trust in New Data Sources: Crowdsourcing Image Classification for Ecology

Author:

Santos‐Fernandez Edgar12ORCID,Vercelloni Julie12ORCID,Price Aiden12ORCID,Heron Grace12ORCID,Christensen Bryce3,Peterson Erin E.12ORCID,Mengersen Kerrie12ORCID

Affiliation:

1. School of Mathematical Sciences Queensland University of Technology Brisbane QLD 4000 Australia

2. Centre for Data Science Queensland University of Technology Brisbane QLD 4000 Australia

3. Visualisation and Interactive Solutions for Engagement and Research (VISER) Lab, Queensland University of Technology Brisbane QLD 4000 Australia

Abstract

SummaryCrowdsourcing methods facilitate the production of scientific information by non‐experts. This form of citizen science (CS) is becoming a key source of complementary data in many fields to inform data‐driven decisions and study challenging problems. However, concerns about the validity of these data often constrain their utility. In this paper, we focus on the use of citizen science data in addressing complex challenges in environmental conservation. We consider this issue from three perspectives. First, we present a literature scan of papers that have employed Bayesian models with citizen science in ecology. Second, we compare several popular majority vote algorithms and introduce a Bayesian item response model that estimates and accounts for participants' abilities after adjusting for the difficulty of the images they have classified. The model also enables participants to be clustered into groups based on ability. Third, we apply the model in a case study involving the classification of corals from underwater images from the Great Barrier Reef, Australia. We show that the model achieved superior results in general and, for difficult tasks, a weighted consensus method that uses only groups of experts and experienced participants produced better performance measures. Moreover, we found that participants learn as they have more classification opportunities, which substantially increases their abilities over time. Overall, the paper demonstrates the feasibility of CS for answering complex and challenging ecological questions when these data are appropriately analysed. This serves as motivation for future work to increase the efficacy and trustworthiness of this emerging source of data.

Funder

Australian Research Council

Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3