Affiliation:
1. School of Mathematical Sciences Queensland University of Technology Brisbane QLD 4000 Australia
2. Centre for Data Science Queensland University of Technology Brisbane QLD 4000 Australia
3. Visualisation and Interactive Solutions for Engagement and Research (VISER) Lab, Queensland University of Technology Brisbane QLD 4000 Australia
Abstract
SummaryCrowdsourcing methods facilitate the production of scientific information by non‐experts. This form of citizen science (CS) is becoming a key source of complementary data in many fields to inform data‐driven decisions and study challenging problems. However, concerns about the validity of these data often constrain their utility. In this paper, we focus on the use of citizen science data in addressing complex challenges in environmental conservation. We consider this issue from three perspectives. First, we present a literature scan of papers that have employed Bayesian models with citizen science in ecology. Second, we compare several popular majority vote algorithms and introduce a Bayesian item response model that estimates and accounts for participants' abilities after adjusting for the difficulty of the images they have classified. The model also enables participants to be clustered into groups based on ability. Third, we apply the model in a case study involving the classification of corals from underwater images from the Great Barrier Reef, Australia. We show that the model achieved superior results in general and, for difficult tasks, a weighted consensus method that uses only groups of experts and experienced participants produced better performance measures. Moreover, we found that participants learn as they have more classification opportunities, which substantially increases their abilities over time. Overall, the paper demonstrates the feasibility of CS for answering complex and challenging ecological questions when these data are appropriately analysed. This serves as motivation for future work to increase the efficacy and trustworthiness of this emerging source of data.
Funder
Australian Research Council
Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献