An Optimised Optional Randomised Response Technique

Author:

Pushadapu Kavya1,Singh Sarjinder1ORCID,Sedory Stephen A.1

Affiliation:

1. Department of Mathematics Texas A&M University‐Kingsville Kingsville TX 78363 USA

Abstract

SummaryIn this paper, we begin by reviewing the optional randomised response technique estimator (ORRTE) developed by Chaudhuri and Mukerjee for estimating the proportion of a sensitive characteristic in a population. We show that their estimator is unbiased and has smaller variance than the Warner's estimator. Then we make an attempt at developing an optimised optional randomised response technique estimator (OORRTE). The proposed OORRTE is shown to be more efficient than the ORRTE. Findings from simulation studies are discussed and interpreted for various situations. Sample sizes for the Warner's estimator, the ORRTE and the OORRTE are computed based on power analysis introduced by Ulrich, Schroter, Striegel and Simon. Finally, we include an application to real data on COVID‐19 by considering it to be partially sensitive variable; that is, sensitive to some but not to others. The data used are included in the paper and the R‐codes used in the simulation study are documented in online material.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3