Alternative Approaches for Estimating Highest‐Density Regions

Author:

Deliu Nina12ORCID,Liseo Brunero1ORCID

Affiliation:

1. MEMOTEF Department Sapienza University of Rome Rome Italy

2. MRC—Biostatistics Unit University of Cambridge Cambridge UK

Abstract

SummaryAmong the variety of statistical intervals, highest‐density regions (HDRs) stand out for their ability to effectively summarise a distribution or sample, unveiling its distinctive and salient features. An HDR represents the minimum size set that satisfies a certain probability coverage, and current methods for their computation require knowledge or estimation of the underlying probability distribution or density . In this work, we illustrate a broader framework for computing HDRs, which generalises the classical density quantile method. The framework is based on neighbourhood measures, that is, measures that preserve the order induced in the sample by , and include the density as a special case. We explore a number of suitable distance‐based measures, such as the ‐nearest neighbourhood distance, and some probabilistic variants based on copula models. An extensive comparison is provided, showing the advantages of the copula‐based strategy, especially in those scenarios that exhibit complex structures (e.g. multimodalities or particular dependencies). Finally, we discuss the practical implications of our findings for estimating HDRs in real‐world applications.

Funder

Partnership for Clean Competition

Publisher

Wiley

Reference50 articles.

1. The statistical analysis of compositional data;Aitchison J.;J. Royal Stat. Soc. Ser. B: Stat. Methodol.,1982

2. Methods for multidimensional event classification: a case study using images from a Cherenkov gamma‐ray telescope;Bock R.K.;Nuclear Instrum. Methods Phys. Res. Sect. A: Acceler., Spectromet., Detect. Assoc. Equip.,2004

3. Bayesian Inference in Statistical Analysis

4. Multivariate quantile function models;Cai Y.;Stat. Sin.,2010

5. Asymptotics for general multivariate kernel density derivative estimators;Chacón J.E.;Stat. Sin.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3