Hybrid SV‐GARCH, t‐GARCH and Markov‐switching covariance structures in VEC models—Which is better from a predictive perspective?

Author:

Pajor Anna12,Wróblewska Justyna3,Kwiatkowski Łukasz3ORCID,Osiewalski Jacek3

Affiliation:

1. Department of Mathematics Krakow University of Economics Krakow Poland

2. Department of Financial Mathematics Jagiellonian University Krakow Poland

3. Department of Econometrics and Operations Research Krakow University of Economics Krakow Poland

Abstract

SummaryWe compare predictive performance of a multitude of alternative Bayesian vector autoregression (VAR) models allowing for cointegration and time‐varying conditional covariances, described by different multivariate stochastic volatility (MSV) models, including their hybrids with multivariate GARCH processes (MSV‐MGARCH), as well as t‐GARCH and Markov‐switching structures. The forecast accuracy is evaluated mainly through predictive Bayes factors, but energy scores and the probability integral transform are also used. Two empirical studies, for the US and Polish economies, are based on a small model of monetary policy comprising inflation, unemployment and interest rate. The results indicate that capturing conditional heteroskedasticity by some MSV‐MGARCH specifications contributes the most to the forecasting power of the VAR/VEC model.

Funder

Uniwersytet Ekonomiczny w Krakowie

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference61 articles.

1. Point, interval and density forecasts of exchange rates with time varying parameter models

2. Large Bayesian vector auto regressions

3. Forecast accuracy of a BVAR under alternative specifications of the zero lower bound;Berg T. O.;Stud. Nonlinear Dyn. Econom.,2017

4. The COVID‐19 shock and challenges for inflation modelling;Bobeica E.;Int. J. Forecast.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3