Estimating the Reciprocal of a Binomial Proportion

Author:

Wei Jiajin1ORCID,He Ping2,Tong Tiejun1

Affiliation:

1. Department of Mathematics Hong Kong Baptist University Hong Kong

2. Faculty of Science and Technology BNU‐HKBU United International College Zhuhai China

Abstract

SummaryThe binomial proportion is a classic parameter with many applications and has also been extensively studied in the literature. By contrast, the reciprocal of the binomial proportion, or the inverse proportion, is often overlooked, even though it also plays an important role in various fields. To estimate the inverse proportion, the maximum likelihood method fails to yield a valid estimate when there is no successful event in the Bernoulli trials. To overcome this zero‐event problem, several methods have been introduced in the previous literature. Yet to the best of our knowledge, there is little work on a theoretical comparison of the existing estimators. In this paper, we first review some commonly used estimators for the inverse proportion, study their asymptotic properties, and then develop a new estimator that aims to eliminate the estimation bias. We further conduct Monte Carlo simulations to compare the finite sample performance of the existing and new estimators, and also apply them to handle the zero‐event problem in a meta‐analysis of COVID‐19 data for assessing the relative risks of physical distancing on the infection of coronavirus.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3