A Slicing‐Free Perspective to Sufficient Dimension Reduction: Selective Review and Recent Developments

Author:

Li Lu1,Shao Xiaofeng2,Yu Zhou3ORCID

Affiliation:

1. Shanghai Jiao Tong University Shanghai China

2. University of Illinois at Urbana Champaign Champaign IL USA

3. East China Normal University Shanghai China

Abstract

SummarySince the pioneering work of sliced inverse regression, sufficient dimension reduction has been growing into a mature field in statistics and it has broad applications to regression diagnostics, data visualisation, image processing and machine learning. In this paper, we provide a review of several popular inverse regression methods, including sliced inverse regression (SIR) method and principal hessian directions (PHD) method. In addition, we adopt a conditional characteristic function approach and develop a new class of slicing‐free methods, which are parallel to the classical SIR and PHD, and are named weighted inverse regression ensemble (WIRE) and weighted PHD (WPHD), respectively. Relationship with recently developed martingale difference divergence matrix is also revealed. Numerical studies and a real data example show that the proposed slicing‐free alternatives have superior performance than SIR and PHD.

Funder

National Natural Science Foundation of China

East China Normal University

Publisher

Wiley

Reference47 articles.

1. Minimum average deviance estimation for sufficient dimension reduction;Adragni K.P.;J. Stat. Comput. Simul.,2018

2. Detecting independence of random vectors: Generalized distance covariance and Gaussian covariance;Böttcher B.;Modern Stochast.: Theory Appl.,2018

3. A new framework for distance and kernel‐based metrics in high dimensions;Chakraborty S.;Electron. J. Stat.,2021

4. Regression Graphics

5. Dimension reduction for conditional mean in regression;Cook R.D.;Ann. Stat.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3