Regulation of proteolysis in bovine cumulus cells with possible inclusion of proton pump activators

Author:

Coruhlu Ipek1,Tepekoy Filiz123ORCID

Affiliation:

1. Department of Histology and Embryology, Faculty of Medicine Altinbas University Istanbul Turkey

2. Central Research Laboratory Altinbas University Istanbul Turkey

3. School of Human Sciences, College of Science and Engineering University of Derby Derby UK

Abstract

AbstractThe aim of this study was to reveal the effects of V‐ATPase proton pump activation on lysosomal acidity and protein degradation in cultured cumulus cells. Cumulus cells from bovine ovaries were cultured in the presence of 10 and 50 μM doses of V‐ATPase proton pump activators PIP2, PMA and DOG for 12 and 24 h. At the end of the culture period, the level of protein degradation was evaluated through DQ‐Red‐BSA analysis and the lysosomes were detected through a fluorescent probe. In addition, total and phosphorylated MAPK1/3 and AKT protein levels of cumulus cells were determined through Western blotting. PIP2 and PMA were shown to increase protein degradation and lysosomal acidity in cultured bovine cumulus cells, whereas DOG did not have any significant effects on these cells. Total and phosphorylated MAPK and AKT protein levels were higher in PIP2 and PMA groups compared with the control and DOG. It was concluded that particular proton pump activators can enhance protein degradation and lysosomal acidification in cultured bovine cumulus cells without having detrimental effects on cell signalling members required for cell viability and proper functioning. Due to the cellular interactions, increasing the lysosomal activity in cumulus cells in the culture environment could also affect the removal of protein aggregates in the oocytes. This strategy could be effective for improving in vitro maturation of the oocytes by providing proteostasis.

Publisher

Wiley

Subject

Endocrinology,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3