Microbial influences on severity and sex bias of systemic autoimmunity

Author:

Lee Jean12,Reiman Derek3,Singh Samara2,Chang Anthony2,Morel Laurence4ORCID,Chervonsky Alexander V.256ORCID

Affiliation:

1. Committee on Cancer Biology The University of Chicago Chicago Illinois USA

2. Department of Pathology The University of Chicago Chicago Illinois USA

3. Toyota Technological Institute at Chicago Chicago Illinois USA

4. Department of Microbiology and Immunology The University of Texas Health Science Center at San Antonio San Antonio Texas USA

5. Committee on Immunology The University of Chicago Chicago Illinois USA

6. Committee on Microbiology The University of Chicago Chicago Illinois USA

Abstract

SummaryCommensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ‐free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific‐Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM‐Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg−/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex‐GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.

Funder

Center for Scientific Review

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autoimmunity and the microbiome;Immunological Reviews;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3