The dam that fly ash built

Author:

Montgomery Amy1ORCID,Kasaniya Mahipal2,Zhao Pengfei1,Thomas Michael2,Peterson Karl1ORCID

Affiliation:

1. Department of Civil & Mineral Engineering University of Toronto Toronto Ontario Canada

2. Department of Civil Engineering University of New Brunswick Fredericton New Brunswick Canada

Abstract

AbstractWhen the first concrete was poured in 1949 for the Hungry Horse Dam (Montana, USA), pozzolan cements had already been used in several major North American dams, including Grand Coulee on the Columbia River (diatomaceous earth explored but ultimately not used), Friant on the San Joaquin River and Altus on the North Fork Red River (pumicite) and Bonneville on the Columbia River and Davis on the Colorado River (calcined clay). But Hungry Horse Dam stands out as the first dam constructed using coal combustion fly ash. Utilising 2.4 million cubic metres of concrete, the dam is located on the South Fork Flathead River, one of the tributaries feeding one of the nation's major waterways, the Columbia River, and closely related to the adjacent Glacier National Park. In this respect, Hungry Horse is directly connected to two momentous periods in modern history – the massive adoption in the 1950s of coal as fuel for power plants, and the ongoing threats to fresh water supply and the rapid retreat of alpine glaciers due to global warming. Two concrete cores from this dam, one with fly ash and one without fly ash, are examined microscopically to explore the long‐term suppression of alkali‐aggregate reaction by fly ash. The core without fly ash exhibits clear evidence of alkali‐aggregate reaction, manifested by sandstone coarse aggregate particles with darkened reaction rims. Sandstone coarse aggregate particles of the same lithology in the core with fly ash are without signs of alkali‐aggregate reaction. A detailed examination of the darkened rims indicates that alkali‐silica reaction products fill the narrow gaps between adjacent sand grains in the sandstone. This alkali‐silica gel infilling allows for optical continuity between adjacent sand grains and is responsible for the classic darkened rim associated with the alkali‐aggregate reaction.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3