miR396b/GRF6 module contributes to salt tolerance in rice

Author:

Yuan Huanran12,Cheng Mingxing12ORCID,Wang Ruihua1,Wang Zhikai3,Fan Fengfeng12,Wang Wei1,Si Fengfeng1,Gao Feng1,Li Shaoqing12ORCID

Affiliation:

1. State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education College of Life Sciences, Wuhan University Wuhan China

2. Hubei Hongshan Laboratory Wuhan China

3. College of Life Science, Yangtze University Jingzhou China

Abstract

SummarySalinity, as one of the most challenging environmental factors restraining crop growth and yield, poses a severe threat to global food security. To address the rising food demand, it is urgent to develop crop varieties with enhanced yield and greater salt tolerance by delving into genes associated with salt tolerance and high‐yield traits. MiR396b/GRF6 module has previously been demonstrated to increase rice yield by shaping the inflorescence architecture. In this study, we revealed that miR396b/GRF6 module can significantly improve salt tolerance of rice. In comparison with the wild type, the survival rate of MIM396 and OE‐GRF6 transgenic lines increased by 48.0% and 74.4%, respectively. Concurrent with the increased salt tolerance, the transgenic plants exhibited reduced H2O2 accumulation and elevated activities of ROS‐scavenging enzymes (CAT, SOD and POD). Furthermore, we identified ZNF9, a negative regulator of rice salt tolerance, as directly binding to the promoter of miR396b to modulate the expression of miR396b/GRF6. Combined transcriptome and ChIP‐seq analysis showed that MYB3R serves as the downstream target of miR396b/GRF6 in response to salt tolerance, and overexpression of MYB3R significantly enhanced salt tolerance. In conclusion, this study elucidated the potential mechanism underlying the response of the miR396b/GRF6 network to salt stress in rice. These findings offer a valuable genetic resource for the molecular breeding of high‐yield rice varieties endowed with stronger salt tolerance.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3