Predictability and Variation in Language Are Differentially Affected by Learning and Production

Author:

Keogh Aislinn1,Kirby Simon1,Culbertson Jennifer1

Affiliation:

1. Centre for Language Evolution University of Edinburgh

Abstract

AbstractGeneral principles of human cognition can help to explain why languages are more likely to have certain characteristics than others: structures that are difficult to process or produce will tend to be lost over time. One aspect of cognition that is implicated in language use is working memory—the component of short‐term memory used for temporary storage and manipulation of information. In this study, we consider the relationship between working memory and regularization of linguistic variation. Regularization is a well‐documented process whereby languages become less variable (on some dimension) over time. This process has been argued to be driven by the behavior of individual language users, but the specific mechanism is not agreed upon. Here, we use an artificial language learning experiment to investigate whether limitations in working memory during either language learning or language production drive regularization behavior. We find that taxing working memory during production results in the loss of all types of variation, but the process by which random variation becomes more predictable is better explained by learning biases. A computational model offers a potential explanation for the production effect using a simple self‐priming mechanism.

Funder

Economic and Social Research Council

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3