On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation

Author:

Asadzadeh Mohammad1,Zouraris Georgios E.2

Affiliation:

1. Department of Mathematics Chalmers University of Technology and Göteborg University Göteborg Sweden

2. Department of Mathematics and Applied Mathematics, Division of Applied Mathematics: Differential Equations and Numerical Analysis University of Crete Heraklion Crete Greece

Abstract

AbstractWe consider a model initial‐ and Dirichlet boundary–value problem for a nonlinear Schrödinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second‐order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal‐order error estimates in the and the norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a Courant‐Friedrichs‐Lewy (CFL) condition between the space mesh size and the time step sizes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3