Stabilized time‐series expansions for high‐order finite element solutions of partial differential equations

Author:

Deeb Ahmad1,Dutykh Denys12ORCID

Affiliation:

1. Mathematics Department Khalifa University of Science and Technology Abu Dhabi United Arab Emirates

2. Causal Dynamics Pty Ltd Perth Australia

Abstract

AbstractOver the past decade, Finite Element Method (FEM) has served as a foundational numerical framework for approximating the terms of Time‐Series Expansion (TSE) as solutions to transient Partial Differential Equation (PDE). However, the application of high‐order Finite Element (FE) to certain classes of PDEs, such as diffusion equations and the Navier–Stokes (NS) equations, often leads to numerical instabilities. These instabilities limit the number of valid terms in the series, though the efficiency of time‐series integration even when resummation techniques like the Borel–Padé–Laplace (BPL) integrators are employed. In this study, we introduce a novel variational formulation for computing the terms of a TSE associated with a given PDE using higher‐order FEs. Our approach involves the incorporation of artificial diffusion terms on the left‐hand side of the equations corresponding to each power in the series, serving as a stabilization technique. We demonstrate that this method can be interpreted as a minimization of an energy functional, wherein the total variations of the unknowns are considered. Furthermore, we establish that the coefficients of the artificial diffusion for each term in the series obey a recurrence relation, which can be determined by minimizing the condition number of the associated linear system. We highlight the link between the proposed technique and the Discrete Maximum Principle (DMP) of the heat equation. We show, via numerical experiments, how the proposed technique allows having additional valid terms of the series that will be substantial in enlarging the stability domain of the BPL integrators.

Funder

Khalifa University of Science, Technology and Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3