Semiparametric recovery of central dimension reduction space with nonignorable nonresponse

Author:

Zheng Siming1,Wan Alan T. K.2ORCID,Zhou Yong3

Affiliation:

1. Department of Biostatistics Yale School of Public Health New Haven USA

2. Department of Biostatistics, Department of Management Sciences, and School of Data Science City University of Hong Kong Hong Kong China

3. Faculty of Economics and Management East China Normal University Shanghai China

Abstract

Sufficient dimension reduction (SDR) methods are effective tools for handling high dimensional data. Classical SDR methods are developed under the assumption that the data are completely observed. When the data are incomplete due to missing values, SDR has only been considered when the data are randomly missing, but not when they are nonignorably missing, which is arguably more difficult to handle due to the missing values' dependence on the reasons they are missing. The purpose of this paper is to fill this void. We propose an intuitive, easy‐to‐implement SDR estimator based on a semiparametric propensity score function for response data with non‐ignorable missing values. We refer to it as the dimension reduction‐based imputed estimator. We establish the theoretical properties of this estimator and examine its empirical performance via an extensive numerical study on real and simulated data. As well, we compare the performance of our proposed dimension reduction‐based imputed estimator with two competing estimators, including the fusion refined estimator and cumulative slicing estimator. A distinguishing feature of our method is that it requires no validation sample. The SDR theory developed in this paper is a non‐trivial extension of the existing literature, due to the technical challenges posed by nonignorable missingness. All the technical proofs of the theorems are given in the Appendix S1.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3