Molecular identification of glutathione S‐transferase genes and their potential roles in insecticides susceptibility of Grapholita molesta

Author:

Zhang Songdou1ORCID,Zhang Dongyue1ORCID,Jia Yujie1ORCID,Li Jianying1ORCID,Li Zhen1ORCID,Liu Xiaoxia1ORCID

Affiliation:

1. Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection China Agricultural University Beijing China

Abstract

AbstractGrapholita molesta is one kind of serious fruit‐boring pests in the world, which caused huge economic losses to the fruit industry including pear and apple. The heavy usage of synthetic insecticides resulted in different degrees of resistance of G. molesta to some commonly used insecticides. However, the tolerance mechanisms of G. molesta to insecticides are still unclear. Glutathione S‐transferases (GSTs) belong to the superfamily of detoxifying enzymes and mainly play important roles in detoxification metabolism and insecticide susceptibility of insects. In this study, we first evaluated the toxicity of three insecticides including emamectin benzoate, chlorantraniliprole and lambda‐cyhalothrin on G. molesta at different developmental stages. Synergism study showed that the susceptibility of G. molesta larvae to these three insecticides obviously increased when the enzyme activity of GST was inhibited by diethyl maleate compared with the controls. Next, we screened out six GmGST genes which are upregulated after insecticides treatment from a total of 21 GmGST genes and analysed their sequence characteristics and expression profiles. RNAi and bioassay results further revealed that the mortality of 5th instar larvae significantly increased after exposure to LC30 of emamectin benzoate, chlorantraniliprole and lambda‐cyhalothrin when silencing of GmGSTo2, GmGSTs1 and GmGSTz1 compared with the controls. In conclusion, this study indicated that GmGSTo2, GmGSTs1 and GmGSTz1 play important roles in insecticides susceptibility of G. molesta to three commonly used insecticides, which is significance for its future integrated management.

Funder

Earmarked Fund for China Agriculture Research System

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3