Synthesis and import of GDP‐l‐fucose into the Golgi affect plant–water relations

Author:

Waszczak Cezary1ORCID,Yarmolinsky Dmitry2ORCID,Leal Gavarrón Marina1ORCID,Vahisalu Triin1ORCID,Sierla Maija1ORCID,Zamora Olena2ORCID,Carter Ross3ORCID,Puukko Tuomas1ORCID,Sipari Nina14ORCID,Lamminmäki Airi1ORCID,Durner Jörg5ORCID,Ernst Dieter5ORCID,Winkler J. Barbro6ORCID,Paulin Lars7ORCID,Auvinen Petri7ORCID,Fleming Andrew J.8ORCID,Andersson Mats X.9ORCID,Kollist Hannes2ORCID,Kangasjärvi Jaakko1ORCID

Affiliation:

1. Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre University of Helsinki FI‐00014 Helsinki Finland

2. Institute of Technology University of Tartu 50411 Tartu Estonia

3. Sainsbury Laboratory University of Cambridge CB2 1LR Cambridge UK

4. Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences University of Helsinki FI‐00014 Helsinki Finland

5. Institute of Biochemical Plant Pathology, Helmholtz Zentrum München German Research Center for Environmental Health 85764 Neuherberg Germany

6. Research Unit Environmental Simulation, Helmholtz Zentrum München German Research Center for Environmental Health 85764 Neuherberg Germany

7. Institute of Biotechnology University of Helsinki FI‐00014 Helsinki Finland

8. School of Biosciences University of Sheffield S10 2TN Sheffield UK

9. Department of Biological and Environmental Sciences University of Gothenburg SE‐405 30 Gothenburg Sweden

Abstract

Summary Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone‐sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata‐closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP‐l‐fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP‐l‐Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi‐localized fucosylation events. However, impaired fucosylation of xyloglucan, N‐linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l‐fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole‐plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant–water relations.

Funder

Academy of Finland

Eesti Teadusagentuur

Ella ja Georg Ehrnroothin Säätiö

European Regional Development Fund

FP7 Research infrastructures

Helsingin Yliopisto

Opetushallitus

Suomen Kulttuurirahasto

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3